
Monte Carlo Radiative Heat Transfer Simulation
on a Reconfigurable Computer

Maya Gokhale, Janette Frigo, Christine Ahrens, Justin L. Tripp, and
Ron Minnich

Los Alamos National Laboratory

Abstract. Recently, the appearance of very large (3 – 10M gate) FPGAs
with embedded arithmetic units has opened the door to the possibility of
floating point computation on these devices. While previous researchers
have described peak performance or kernel matrix operations, there is
as yet relatively little experience with mapping an application-specific
floating point loop onto FPGAs. In this work, we port a supercomputer
application benchmark onto Xilinx Virtex II and Virtex II Pro FPGAs
and compare performance with three Pentium IV Xeon microprocessors.
Our results show that this application-specific pipeline, with 12 multiply,
10 add/subtract, one divide, and two compare modules of single precision
floating point data type, shows speed up of 10.37×. We analyze the trade-
offs between hardware and software to characterize the algorithms that
will perform well on current and future FPGA architectures.

1 Introduction

Over the past decade, Reconfigurable Computing (RCC) using Field-Programm-
able Gate Arrays (FPGAs) has demonstrated speed-ups of one to two orders
of magnitude on data- and compute-intensive processing tasks involving fixed
point computation on small integers, typically in signal and image processing
applications. Floating point computation was not mapped to FPGAs due to
the large operand size (32- or 64-bit) and excessive area consumed by float-
ing point arithmetic units on configurable logic cells. Recently, that limitation of
FPGAs appears to be receding: 3–10 million gate FPGAs with embedded proces-
sors, memories, and arithmetic units have become available, making it feasible
to consider a broader range of applications than traditional signal and image
processing, including those requiring floating point operations. Studies compar-
ing floating point performance of FPGAs vs. high performance microprocessors
[1] suggest that peak FPGA floating-point performance is growing significantly
faster than peak floating-point performance for a CPU. Other studies [2,3] also
suggest that modern FPGAs may be competitive with microprocessors on dense
matrix operations such as matrix multiply and LU decomposition.

However, it is well-known in the supercomputing community that peak per-
formance and dense matrix kernel operations are far from accurate predictors of
realized performance of a complete application. Memory access patterns, cache
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behavior, control flow, and inter-processor communication result in actual per-
formance that is well below peak. For example, applications run on a cluster
supercomputer often realize no more than 50–80% of theoretical peak [4], reduc-
ing a 30 TFLOP machine to 15 TFLOPs.

The purpose of the work described below is to better quantify the perfor-
mance of FPGA-based floating point computation on real applications by map-
ping a portion of an application (as opposed to a kernel) onto an FPGA. We
compare the performance of an application-specific (single precision) floating
point pipeline mapped to the Virtex family of FPGAs to execution on compa-
rable microprocessors.

Reconfigurable Computing using FPGAs exploits “spatial parallelism”, the
ability, for example, to unroll a computational block directly onto hardware, ex-
ecuting the entire block in parallel. This ability is not available on a CPU, which
depends on a fast clock rate to increase performance. FPGAs use a significant
amount of spatial parallelism to compensate for having a clock speed that is an
order of magnitude slower than that of a CPU.

In this paper we describe our FPGA implementation of a floating-point in-
tensive supercomputing application called “radiative heat transfer” [5]. First, we
describe other floating-point applications implemented on FPGAs and discuss
floating-point libraries for FPGAs. Next, we give an overview of the radiative
heat transfer application. We describe how we parallelized the inner loop of
the application, which is the most computationally intensive portion of the pro-
gram. We present performance results of the inner loop on three Intel Pentium
IV Xeon workstations and compare that to the performance of our implemen-
tation on Xilinx Virtex II and Virtex II Pro FPGAs. Finally, we provide our
conclusions.

2 Related Work

Using FPGAs for floating-point operations is not new. Past efforts explor-
ing floating point include exploration by Virginia Tech[6], a re-evaluation at
Clemson[7] and a library produced at Northeastern[8]. These efforts demon-
strate the viability of using floating-point on FPGAs. FPGAs are viable targets
because they can be programmed to include many concurrent floating-point
operations[1]. Earlier work [9] found that FPGAs were not fast enough to be
competitive with general purpose processors for floating point. However, cur-
rent generations have increased performance with faster logic and embedded
multipliers [10]. This increased performance may allow FPGAs to be used for
floating-point in areas normally reserved for supercomputers.

FPGAs offer several advantages when used to calculate floating-point oper-
ations. First, FPGAs offer a high degree of flexibility, where they can provide a
customized solution for a given floating-point algorithm. Second, due to the avail-
able concurrency, an FPGA can provide a floating-point solution that is faster
than a general purpose processor. Third, FPGAs are based on SRAM, and thus
they track trends in transistors (e.g. “Moore’s Law”) more closely than general
purpose processors. FPGAs take advantage of transistor density to provide high
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levels of concurrency. Offsetting those advantages are the slow clock speed rel-
ative to microprocessors and the relatively large area required by floating point
operands and operations, which limits spatial parallelism opportunities.

Several commercial [11,12] and open source [8,10] libraries are available for
creating floating-point circuits. For our implementation of the radiative heat
transfer algorithm, we chose the FPLibrary, a VHDL library of hardware opera-
tors for floating-point computation, developed by the Arénaire project [13]. The
FPLibrary meets three important qualifications. First, it is written in VHDL
in a platform-independent manner. This allows designs to be easily targeted
to different FPGA architectures. Second, the library implements add, multiply
and divide floating point operations which are required for this algorithm. Third,
the modules and floating-point types have parameterizable bitwidths, so that we
can easily program the library for single, double or arbitrary sized floating point
types. FPLibrary is used to leverage the advantages of FPGAs to implement the
core of a supercomputing application.

3 Description of the Monte Carlo Radiative Heat
Transfer Simulation

Monte Carlo radiative heat transfer simulation was chosen for implementation
on an FPGA, because it contains computationally intensive floating-point op-
erations. It has been run on a SPARCStation computer cluster [14] as well the
Cyber 205 supercomputer [5]. It is a real world problem, because it models the
geometry of a laser isotope separation (LIS) unit to accurately determine the
radiant exchange factors among the surfaces. This is an important component
of the isotope separation process simulation.

Fig. 1. Test Geometry for Radiative Heat Transfer

The radiative heat transfer simulation is a Monte Carlo application that
traces a large number of photons emitted from the surfaces of a 2-D enclosure
(Figure 1). The simulation records how many photons emitted from each surface
i were absorbed at surface j. This information is used to compute a heat transfer
coefficient between each pair of surfaces, i and j. It is a Monte Carlo application
because it uses random values to determine characteristics of an emitted photon’s
path and because it traces a large number of photons.
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In the algorithm, N photons are emitted (with randomly chosen characteris-
tics) from each surface of an m-sided polygon. The algorithm follows the path of
each emitted photon. It identifies the surface of intersection, which is the most
computationally intensive portion of the algorithm. Next, a random number de-
termines whether the photon is absorbed into the surface, reflected off of it, or
transmitted through it. The photon is followed until it is transmitted, absorbed
or lost. This algorithm is designed to calculate intersections assuming a con-
vex chamber. There is also a more sophisticated version which works with both
convex and concave surfaces, and is the subject of future work.

Fig. 2. Radiative Heat Transfer algorithm loop structure. Loop “d” is implemented
on the FPGA.

The parallel version of the algorithm distributes at the “task” level. The
pseudo-code for each task is summarized in Figure 2. In loop “a”, a task iterates
through the m surfaces of the polygon and traces the N photons emitted from
each surface. For each surface, a for loop (“b”) iterates through each photon
emitted, then an inner while loop (“c”) checks if the photon is still active before
following it to its next surface intersection. Inside the while loop, an inner for
loop (“d”) computes the surface intersection, then the random number generator
determines if the photon is absorbed, reflected, transmitted or lost.

When considering which part of the algorithm to implement on the FPGA,
we decided that parallelism at the task or surface level was too coarse, and
would not fit on currently available FPGAs. At the while loop level, tracing
one photon’s path until it is not active may be possible in terms of fitting on
an FPGA, but there are dependencies carried between loop iterations that make
the implementation more complex and limit parallelism. At the inner for loop
level, where the algorithm checks for the surface of intersection, the code is
straightforward to realize on an FPGA, since the loop iterations are independent
of each other and can be spatially replicated on the FPGA.
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float x1[NSM], x2[NSM], y1[NSM], y2[NSM], delx[NSM], dely[NSM], sqln[NSM], rhs[NSM];

delxs = delx[s]; delys = dely[s]; rhss = rhs[s];
x1s = x1[s]; y1s = y1[s]; x2s = x2[s]; y2s = y2[s]; sqlns = sqln[s];

/* compute intersection points*/
det = ex*delys - ey*delxs;
absdt = fabs(det);
if(absdt <= epsdet0) det = epsdet0;
dtinv = 1.0/det;
xi = dtinv * (delxi*rhse - ex*rhss);
yi = dtinv * (delyi*rhse - ey*rhss);

/* test for intersection between surface endpoints*/
ssq = (xi - x1s)*(xi - x1s) + (xi - x2s)*(xi - x2s)

+ (yi - y1s)*(yi - y1s) + (yi - y2s)*(yi - y2s);
if(ssq <= sqlns) {

intersect_side[s] = 1; /* s is the intersected side */
else intersect_side[s] = 0; /* break here in the software version */

}

Fig. 3. Radiative Heat Transfer code implemented on the FPGA

In addition, this inner for loop is the most computationally intensive por-
tion of the program. Using a timer described in Section 5.1, with N=5000 and
m=37, we found that a Pentium IV Xeon 3 GHz workstation spends 86% of
the algorithm time executing the inner for loop. The C code inside this loop is
included in Figure 3. All the variables used in the arithmetic computations are
floating-point.

Originally the program was written for double precision floating-point. In this
work, we evaluate single and double precision floating-point. We found that there
is not a significant difference in the scientific results from the algorithm when
using single versus double precision. The number of photons absorbed differed by
only .0025% in the single precision version as compared to the double precision
version.

4 Hardware Implementation

We target the hardware implementation to the Virtex II and Virtex II Pro
FPGAs. These devices have small embedded memories called Block RAMs as
well as embedded 18-bit multipliers. An initial approximation of the pipeline was
generated from the Streams-C compiler [15] on an integer version of the code.
The generated pipeline was then converted to use floating point modules, and
manually optimized to maximize pipelining.

Figure 3 shows the C code for the compute-intensive for loop of the radia-
tive heat transfer algorithm. In each iteration of this loop, the calculations are
performed relative to one of the surfaces of the convex shape. Some variables
are invariant across loop iterations (e.g., epsdet0) while others assume unique
values for each loop iteration, as shown by the array index s, for example, delxs,
delys, and rhss. The latter variables are assumed to reside in Block RAMs.

Figure 4 shows the pipelined hardware implementation of the loop. The de-
sign is an 11 stage pipeline utilizing the floating point libraries from [13]. It
consists of 12 multiply, 3 addition, 7 subtraction, 1 divide and 2 comparison
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Fig. 4. FPGA Implementation

modules. The breakdown of the latency is as follows: 4 cycles for multiplica-
tion, 3 cycles for addition or subtraction, 15 cycles for division, and 1 cycle for
comparison. The total latency of the 11 stage pipeline is 41 cycles. There are 2
intermediate registers that need pipelining from Level 4 through Level 5. This
data synchronization requirement introduces 32 additional 34-bit registers into
the design.1 For clarity, only two registers are shown in in the Figure 4 in Level
5, but there are 15 registers for each operand, for a total of thirty 34-bit registers
at Level 5.

For this implementation there are eleven inputs to the pipeline – six inputs
are consumed in Level 1, four at Level 7 and one at Level 10. The data is stored
in two 204-bit by 512 deep, dual-port Block RAMs. Memory reads are scheduled
so that values arrive at Level 7 and at Level 10 at exactly the cycle they are
consumed. By scheduling the reads in this way, we avoid the overhead of fully
pipelining the 5 inputs that are needed at Level 7 and Level 10. The latter
approach introduces an extra 27 cycles × 4 registers (Level 7) plus 40 cycles ×
1 register (Level 10), or 112 + 40 = 152 34-bit registers into the design. These
152 registers correlate to a 1% increase in area utilization on the Virtex II.

5 Performance

This section analyzes the performance of the application running on several
Pentium IV Xeon (P4) systems versus the Virtex II (V2-6k) and Virtex II Pro
(V2p100,V2p125)2 hardware platforms. Note that the V2p125 is not yet avail-
able.

1 The FPLibrary adds a 2-bit tag to each floating point register.
2 The V2-6k is speed grade –4 and the V2p100 and V2p124 are speed grade –6.
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5.1 Workstation Performance

For performance comparisons with the FPGA we examined the innermost loop
of the application, which is the iteration over m surfaces for a single photon,
searching for an intersection. The static instruction count of this loop count
is 130 instructions: 61 floating point instructions, 9 branches, 73 instructions
which reference the stack (including floating load/store to stack for locals), and
only one integer instruction (the loop counter). All the instructions and data for
this loop fit into the Level 1 cache (the fastest cache level), and hence could be
expected to run at maximum speed on the CPU.

Timing measurements of the inner loop are easily perturbed due to the small
instruction count of 130 instructions. Obtaining an accurate measure of this
loop represents a challenge, since traditional profiling tools such as gprof are
only acceptable for function-level timing, and do not provide an extremely ac-
curate measure of the inner loop. However, on the Pentium and later processors
there is a timer register, called the Time Stamp Counter (TSC), which measures
processor ticks at the processor clock rate. This 64-bit read-only counter is ex-
tremely accurate, as it is implemented as a Model-Specific Register inside the
CPU. The overhead of using this register is extremely low. On a 1.7 GHz P4 the
TSC runs at 1.68 GHz and has a resolution of 595 picoseconds; on a 3 GHz P4
the TSC has a resolution of 333 picoseconds.

We used the TSC to measure the inner loop of the application. C code was
added using the gcc asm statement, which produces inline assembly code to read
the TSC at the start and end of the loop code. We performed measurements both
in the application itself, and by extracting the inner loop and running it many
times. As expected for this loop, the performance varied with the CPU being
used, with the fastest CPU being the 3 GHz P4.

We tested both the Intel compiler v7.0 and gcc v3.2. The gcc compiler pro-
vided the best performance results with –O3 optimization level. Timing for one
iteration of the inner loop, shown in Figure 5, ranges from 60ns to 104ns. It is
important to note that the time is an average, since in the sequential version of
the loop body, there is opportunity for early exit from the loop.

5.2 FPGA Performance

Synplicity was used to synthesize the inner loop to Xilinx FPGAs. Placement and
area results were obtained using Xilinx ISE 6.1. The results for one iteration of
the inner loop on the Virtex II and Virtex II Pro FPGAs are shown in Figure 5.
On the V2-6k, only 20% of the Look Up Tables (LUT) are used by the loop
body. However, all the multipliers are used, and therefore only one instance of
the loop body can fit on this part. In contrast, the larger Virtex II Pro parts
can fit three pipelines of the inner loop, resulting in a higher degree of spatial
parallelism. The speed up row calculates the speed up relative to the 3 GHz P4.
The hardware calculation assumes a steady state pipeline in which a result is
delivered every clock cycle. With three pipelines three results are delivered every
clock cycle, effectively reduce the execution time by one third. These results do
not include the time to write the parameters into Block RAM.
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V2-6k V2p100 V2p125 P4 1.7 P4 2.4 P4 3
# Pipelines 1 1 2 3 1 2 3
Execution Time (ns) 29.9 16.7 7.89 5.78 15.7 7.72 6.12 104 74 60
%Area (LUTs) 20 15 33 50 12 26 40
%Multiplers 100 32 64 97 25 51 77
Latency (cycles) 41 41 41 41 41 41 41
Speed up 2.01 3.59 7.61 10.37 3.82 7.77 9.81 0.58 0.81 1

Fig. 5. FPGA vs. Workstation performance for Inner Loop. Speed up compared to
the P4 3 GHz System.

In terms of technology generation, the V2-6k and P4 1.7 GHz are comparable.
The V2-6k hardware implementation outperforms the 1.7 GHz Pentium by a
factor of 3.48. For the newer generations of FPGA and microprocessor (V2p100
and 3 GHz), the single pipeline speed up is slightly better – 3.59×. However,
with this newer generation Virtex Pro it is possible to fit three pipelines on the
V2p100 which allows a speed up of 10.37.

As noted above, the hardware design is highly pipelined. The pipelining al-
lows a relatively high clock frequency for the design, at the cost of high latency
– 41 clock cycles before the first result appears. For a large number of surfaces,
the effect of pipeline latency diminishes. For example, with 10,000 surfaces the
speedup for three pipelines is 10.25×. 150,000 surfaces are desirable for this
particular simulation, so the pipeline latency effect is negligible.

Fig. 6. Placement results for a single pipeline 16, 32, and 64-bit implementations of
the inner loop.

Lastly, if we analyze the granularity of the input data width as shown in
Figure 6, the placement results show that for a 16-bit word width, the area uti-
lization across the Virtex Family is 5% to 8% which allows 10 to 20 instantiations
of the inner loop to run concurrently on the FPGA. For larger bit widths, fewer
parallel versions of the loop can fit onto hardware, for example with 32-bits 3
pipelines fit. As expected, the run-time clock speeds are faster for smaller bit
widths. The results show that on the Virtex II Pro family, 32-bit operations
are only slightly more expensive than 16-bit, while 64-bit incur a much higher
penalty both in area and clock speed. As the graphs show, the 64-bit version of
the application does not fit on the V2-6k.
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5.3 Discussion

Our results show that the FPGA hardware outperforms a comparable generation
of microprocessor by up to 10.37× on an application-specific single-precision
floating point pipeline. There are several points to note.

First, the FPGA implementation must execute all loop iterations of the inner
for loop. The software timing is an average number: many times the software
breaks out of the loop without completing all iterations, as the last if statement
of Figure 3 contains a break in the software version of the loop. If all loop
iterations were executed, the FPGA speed up would be much greater.

Second, this application fits well in the L1 cache of the microprocessor. A
more data-intensive application would better use the strengths of the FPGA
(greater memory bandwidth and better performance on data-intensive compu-
tation).

Third, the tractability of an application kernel to pipelining, especially long
pipelines, is crucial to get performance. The highest performance floating point
operators are heavily pipelined, so there is substantial cost in starting up and
breaking up the pipeline. Like vector processors, the application-specific pipeline
on the FPGA shows the best performance when the algorithm has many iter-
ations with minimal data-dependent branching. In this application, the vector
length is very large, and thus the latency is negligible. This application also has
the advantage of little data-dependent branching. Although predication can be
used to reduce the impact of branching, area costs increase by having both the
then and else bodies instantiated on the chip.

Fourth, the floating point library we used in this experiment is technology-
independent. In fact, we were able to synthesize it to several different families,
including the Altera Stratix. Technology-specific floating point cores such as
Quixilica yield smaller area and faster clock rate. On the minus side, other float-
ing point libraries, including Quixilica, have even higher operation latencies. For
best performance, embedded hard floating point units in a fabric of reconfig-
urable logic would, of course, be desirable.

Finally, it is important to compare the performance of the application-specific
pipeline, with a mix of different floating point operators and branching con-
structs, to peak performance results cited by others. While theoretical peak
numbers are useful to gauge feasibility, a floating point intensive supercomput-
ing application gives us more accurate performance results.

6 Conclusions

We have presented hardware implementation of a floating point Monte Carlo
radiative heat transfer simulation application on the Virtex II and Virtex II Pro
families of FPGA. In contrast to previous work that presented peak performance
or performance results on small kernels, we have implemented an application-
specific pipeline on the FPGA. We have presented detailed timing results com-
paring FPGA speed to high performance workstations, realizing a 10.37× speed
up with three single precision floating point pipelines running on a Virtex II Pro
hardware platform versus running the application on a 3 GHz workstation.
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